HEX
Server: Apache/2.4.41 (Ubuntu)
System: Linux ip-172-31-42-149 5.15.0-1084-aws #91~20.04.1-Ubuntu SMP Fri May 2 07:00:04 UTC 2025 aarch64
User: ubuntu (1000)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: /var/www/vhost/disk-apps/pwa.sports-crowd.com/node_modules/@ionic/core/components/cubic-bezier.js
/*!
 * (C) Ionic http://ionicframework.com - MIT License
 */
/**
 * Based on:
 * https://stackoverflow.com/questions/7348009/y-coordinate-for-a-given-x-cubic-bezier
 * https://math.stackexchange.com/questions/26846/is-there-an-explicit-form-for-cubic-b%C3%A9zier-curves
 */
/**
 * EXPERIMENTAL
 * Given a cubic-bezier curve, get the x value (time) given
 * the y value (progression).
 * Ex: cubic-bezier(0.32, 0.72, 0, 1);
 * P0: (0, 0)
 * P1: (0.32, 0.72)
 * P2: (0, 1)
 * P3: (1, 1)
 *
 * If you give a cubic bezier curve that never reaches the
 * provided progression, this function will return an empty array.
 */
const getTimeGivenProgression = (p0, p1, p2, p3, progression) => {
  return solveCubicBezier(p0[1], p1[1], p2[1], p3[1], progression).map((tValue) => {
    return solveCubicParametricEquation(p0[0], p1[0], p2[0], p3[0], tValue);
  });
};
/**
 * Solve a cubic equation in one dimension (time)
 */
const solveCubicParametricEquation = (p0, p1, p2, p3, t) => {
  const partA = 3 * p1 * Math.pow(t - 1, 2);
  const partB = -3 * p2 * t + 3 * p2 + p3 * t;
  const partC = p0 * Math.pow(t - 1, 3);
  return t * (partA + t * partB) - partC;
};
/**
 * Find the `t` value for a cubic bezier using Cardano's formula
 */
const solveCubicBezier = (p0, p1, p2, p3, refPoint) => {
  p0 -= refPoint;
  p1 -= refPoint;
  p2 -= refPoint;
  p3 -= refPoint;
  const roots = solveCubicEquation(p3 - 3 * p2 + 3 * p1 - p0, 3 * p2 - 6 * p1 + 3 * p0, 3 * p1 - 3 * p0, p0);
  return roots.filter((root) => root >= 0 && root <= 1);
};
const solveQuadraticEquation = (a, b, c) => {
  const discriminant = b * b - 4 * a * c;
  if (discriminant < 0) {
    return [];
  }
  else {
    return [(-b + Math.sqrt(discriminant)) / (2 * a), (-b - Math.sqrt(discriminant)) / (2 * a)];
  }
};
const solveCubicEquation = (a, b, c, d) => {
  if (a === 0) {
    return solveQuadraticEquation(b, c, d);
  }
  b /= a;
  c /= a;
  d /= a;
  const p = (3 * c - b * b) / 3;
  const q = (2 * b * b * b - 9 * b * c + 27 * d) / 27;
  if (p === 0) {
    return [Math.pow(-q, 1 / 3)];
  }
  else if (q === 0) {
    return [Math.sqrt(-p), -Math.sqrt(-p)];
  }
  const discriminant = Math.pow(q / 2, 2) + Math.pow(p / 3, 3);
  if (discriminant === 0) {
    return [Math.pow(q / 2, 1 / 2) - b / 3];
  }
  else if (discriminant > 0) {
    return [
      Math.pow(-(q / 2) + Math.sqrt(discriminant), 1 / 3) - Math.pow(q / 2 + Math.sqrt(discriminant), 1 / 3) - b / 3,
    ];
  }
  const r = Math.sqrt(Math.pow(-(p / 3), 3));
  const phi = Math.acos(-(q / (2 * Math.sqrt(Math.pow(-(p / 3), 3)))));
  const s = 2 * Math.pow(r, 1 / 3);
  return [
    s * Math.cos(phi / 3) - b / 3,
    s * Math.cos((phi + 2 * Math.PI) / 3) - b / 3,
    s * Math.cos((phi + 4 * Math.PI) / 3) - b / 3,
  ];
};

export { getTimeGivenProgression as g };