HEX
Server: Apache/2.4.41 (Ubuntu)
System: Linux ip-172-31-42-149 5.15.0-1084-aws #91~20.04.1-Ubuntu SMP Fri May 2 07:00:04 UTC 2025 aarch64
User: ubuntu (1000)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: /var/www/vhost/disk-apps/pwa.sports-crowd.com/node_modules/supercluster/index.js
import KDBush from 'kdbush';

const defaultOptions = {
    minZoom: 0,   // min zoom to generate clusters on
    maxZoom: 16,  // max zoom level to cluster the points on
    minPoints: 2, // minimum points to form a cluster
    radius: 40,   // cluster radius in pixels
    extent: 512,  // tile extent (radius is calculated relative to it)
    nodeSize: 64, // size of the KD-tree leaf node, affects performance
    log: false,   // whether to log timing info

    // whether to generate numeric ids for input features (in vector tiles)
    generateId: false,

    // a reduce function for calculating custom cluster properties
    reduce: null, // (accumulated, props) => { accumulated.sum += props.sum; }

    // properties to use for individual points when running the reducer
    map: props => props // props => ({sum: props.my_value})
};

const fround = Math.fround || (tmp => ((x) => { tmp[0] = +x; return tmp[0]; }))(new Float32Array(1));

export default class Supercluster {
    constructor(options) {
        this.options = extend(Object.create(defaultOptions), options);
        this.trees = new Array(this.options.maxZoom + 1);
    }

    load(points) {
        const {log, minZoom, maxZoom, nodeSize} = this.options;

        if (log) console.time('total time');

        const timerId = `prepare ${  points.length  } points`;
        if (log) console.time(timerId);

        this.points = points;

        // generate a cluster object for each point and index input points into a KD-tree
        let clusters = [];
        for (let i = 0; i < points.length; i++) {
            if (!points[i].geometry) continue;
            clusters.push(createPointCluster(points[i], i));
        }
        this.trees[maxZoom + 1] = new KDBush(clusters, getX, getY, nodeSize, Float32Array);

        if (log) console.timeEnd(timerId);

        // cluster points on max zoom, then cluster the results on previous zoom, etc.;
        // results in a cluster hierarchy across zoom levels
        for (let z = maxZoom; z >= minZoom; z--) {
            const now = +Date.now();

            // create a new set of clusters for the zoom and index them with a KD-tree
            clusters = this._cluster(clusters, z);
            this.trees[z] = new KDBush(clusters, getX, getY, nodeSize, Float32Array);

            if (log) console.log('z%d: %d clusters in %dms', z, clusters.length, +Date.now() - now);
        }

        if (log) console.timeEnd('total time');

        return this;
    }

    getClusters(bbox, zoom) {
        let minLng = ((bbox[0] + 180) % 360 + 360) % 360 - 180;
        const minLat = Math.max(-90, Math.min(90, bbox[1]));
        let maxLng = bbox[2] === 180 ? 180 : ((bbox[2] + 180) % 360 + 360) % 360 - 180;
        const maxLat = Math.max(-90, Math.min(90, bbox[3]));

        if (bbox[2] - bbox[0] >= 360) {
            minLng = -180;
            maxLng = 180;
        } else if (minLng > maxLng) {
            const easternHem = this.getClusters([minLng, minLat, 180, maxLat], zoom);
            const westernHem = this.getClusters([-180, minLat, maxLng, maxLat], zoom);
            return easternHem.concat(westernHem);
        }

        const tree = this.trees[this._limitZoom(zoom)];
        const ids = tree.range(lngX(minLng), latY(maxLat), lngX(maxLng), latY(minLat));
        const clusters = [];
        for (const id of ids) {
            const c = tree.points[id];
            clusters.push(c.numPoints ? getClusterJSON(c) : this.points[c.index]);
        }
        return clusters;
    }

    getChildren(clusterId) {
        const originId = this._getOriginId(clusterId);
        const originZoom = this._getOriginZoom(clusterId);
        const errorMsg = 'No cluster with the specified id.';

        const index = this.trees[originZoom];
        if (!index) throw new Error(errorMsg);

        const origin = index.points[originId];
        if (!origin) throw new Error(errorMsg);

        const r = this.options.radius / (this.options.extent * Math.pow(2, originZoom - 1));
        const ids = index.within(origin.x, origin.y, r);
        const children = [];
        for (const id of ids) {
            const c = index.points[id];
            if (c.parentId === clusterId) {
                children.push(c.numPoints ? getClusterJSON(c) : this.points[c.index]);
            }
        }

        if (children.length === 0) throw new Error(errorMsg);

        return children;
    }

    getLeaves(clusterId, limit, offset) {
        limit = limit || 10;
        offset = offset || 0;

        const leaves = [];
        this._appendLeaves(leaves, clusterId, limit, offset, 0);

        return leaves;
    }

    getTile(z, x, y) {
        const tree = this.trees[this._limitZoom(z)];
        const z2 = Math.pow(2, z);
        const {extent, radius} = this.options;
        const p = radius / extent;
        const top = (y - p) / z2;
        const bottom = (y + 1 + p) / z2;

        const tile = {
            features: []
        };

        this._addTileFeatures(
            tree.range((x - p) / z2, top, (x + 1 + p) / z2, bottom),
            tree.points, x, y, z2, tile);

        if (x === 0) {
            this._addTileFeatures(
                tree.range(1 - p / z2, top, 1, bottom),
                tree.points, z2, y, z2, tile);
        }
        if (x === z2 - 1) {
            this._addTileFeatures(
                tree.range(0, top, p / z2, bottom),
                tree.points, -1, y, z2, tile);
        }

        return tile.features.length ? tile : null;
    }

    getClusterExpansionZoom(clusterId) {
        let expansionZoom = this._getOriginZoom(clusterId) - 1;
        while (expansionZoom <= this.options.maxZoom) {
            const children = this.getChildren(clusterId);
            expansionZoom++;
            if (children.length !== 1) break;
            clusterId = children[0].properties.cluster_id;
        }
        return expansionZoom;
    }

    _appendLeaves(result, clusterId, limit, offset, skipped) {
        const children = this.getChildren(clusterId);

        for (const child of children) {
            const props = child.properties;

            if (props && props.cluster) {
                if (skipped + props.point_count <= offset) {
                    // skip the whole cluster
                    skipped += props.point_count;
                } else {
                    // enter the cluster
                    skipped = this._appendLeaves(result, props.cluster_id, limit, offset, skipped);
                    // exit the cluster
                }
            } else if (skipped < offset) {
                // skip a single point
                skipped++;
            } else {
                // add a single point
                result.push(child);
            }
            if (result.length === limit) break;
        }

        return skipped;
    }

    _addTileFeatures(ids, points, x, y, z2, tile) {
        for (const i of ids) {
            const c = points[i];
            const isCluster = c.numPoints;

            let tags, px, py;
            if (isCluster) {
                tags = getClusterProperties(c);
                px = c.x;
                py = c.y;
            } else {
                const p = this.points[c.index];
                tags = p.properties;
                px = lngX(p.geometry.coordinates[0]);
                py = latY(p.geometry.coordinates[1]);
            }

            const f = {
                type: 1,
                geometry: [[
                    Math.round(this.options.extent * (px * z2 - x)),
                    Math.round(this.options.extent * (py * z2 - y))
                ]],
                tags
            };

            // assign id
            let id;
            if (isCluster) {
                id = c.id;
            } else if (this.options.generateId) {
                // optionally generate id
                id = c.index;
            } else if (this.points[c.index].id) {
                // keep id if already assigned
                id = this.points[c.index].id;
            }

            if (id !== undefined) f.id = id;

            tile.features.push(f);
        }
    }

    _limitZoom(z) {
        return Math.max(this.options.minZoom, Math.min(Math.floor(+z), this.options.maxZoom + 1));
    }

    _cluster(points, zoom) {
        const clusters = [];
        const {radius, extent, reduce, minPoints} = this.options;
        const r = radius / (extent * Math.pow(2, zoom));

        // loop through each point
        for (let i = 0; i < points.length; i++) {
            const p = points[i];
            // if we've already visited the point at this zoom level, skip it
            if (p.zoom <= zoom) continue;
            p.zoom = zoom;

            // find all nearby points
            const tree = this.trees[zoom + 1];
            const neighborIds = tree.within(p.x, p.y, r);

            const numPointsOrigin = p.numPoints || 1;
            let numPoints = numPointsOrigin;

            // count the number of points in a potential cluster
            for (const neighborId of neighborIds) {
                const b = tree.points[neighborId];
                // filter out neighbors that are already processed
                if (b.zoom > zoom) numPoints += b.numPoints || 1;
            }

            // if there were neighbors to merge, and there are enough points to form a cluster
            if (numPoints > numPointsOrigin && numPoints >= minPoints) {
                let wx = p.x * numPointsOrigin;
                let wy = p.y * numPointsOrigin;

                let clusterProperties = reduce && numPointsOrigin > 1 ? this._map(p, true) : null;

                // encode both zoom and point index on which the cluster originated -- offset by total length of features
                const id = (i << 5) + (zoom + 1) + this.points.length;

                for (const neighborId of neighborIds) {
                    const b = tree.points[neighborId];

                    if (b.zoom <= zoom) continue;
                    b.zoom = zoom; // save the zoom (so it doesn't get processed twice)

                    const numPoints2 = b.numPoints || 1;
                    wx += b.x * numPoints2; // accumulate coordinates for calculating weighted center
                    wy += b.y * numPoints2;

                    b.parentId = id;

                    if (reduce) {
                        if (!clusterProperties) clusterProperties = this._map(p, true);
                        reduce(clusterProperties, this._map(b));
                    }
                }

                p.parentId = id;
                clusters.push(createCluster(wx / numPoints, wy / numPoints, id, numPoints, clusterProperties));

            } else { // left points as unclustered
                clusters.push(p);

                if (numPoints > 1) {
                    for (const neighborId of neighborIds) {
                        const b = tree.points[neighborId];
                        if (b.zoom <= zoom) continue;
                        b.zoom = zoom;
                        clusters.push(b);
                    }
                }
            }
        }

        return clusters;
    }

    // get index of the point from which the cluster originated
    _getOriginId(clusterId) {
        return (clusterId - this.points.length) >> 5;
    }

    // get zoom of the point from which the cluster originated
    _getOriginZoom(clusterId) {
        return (clusterId - this.points.length) % 32;
    }

    _map(point, clone) {
        if (point.numPoints) {
            return clone ? extend({}, point.properties) : point.properties;
        }
        const original = this.points[point.index].properties;
        const result = this.options.map(original);
        return clone && result === original ? extend({}, result) : result;
    }
}

function createCluster(x, y, id, numPoints, properties) {
    return {
        x: fround(x), // weighted cluster center; round for consistency with Float32Array index
        y: fround(y),
        zoom: Infinity, // the last zoom the cluster was processed at
        id, // encodes index of the first child of the cluster and its zoom level
        parentId: -1, // parent cluster id
        numPoints,
        properties
    };
}

function createPointCluster(p, id) {
    const [x, y] = p.geometry.coordinates;
    return {
        x: fround(lngX(x)), // projected point coordinates
        y: fround(latY(y)),
        zoom: Infinity, // the last zoom the point was processed at
        index: id, // index of the source feature in the original input array,
        parentId: -1 // parent cluster id
    };
}

function getClusterJSON(cluster) {
    return {
        type: 'Feature',
        id: cluster.id,
        properties: getClusterProperties(cluster),
        geometry: {
            type: 'Point',
            coordinates: [xLng(cluster.x), yLat(cluster.y)]
        }
    };
}

function getClusterProperties(cluster) {
    const count = cluster.numPoints;
    const abbrev =
        count >= 10000 ? `${Math.round(count / 1000)  }k` :
        count >= 1000 ? `${Math.round(count / 100) / 10  }k` : count;
    return extend(extend({}, cluster.properties), {
        cluster: true,
        cluster_id: cluster.id,
        point_count: count,
        point_count_abbreviated: abbrev
    });
}

// longitude/latitude to spherical mercator in [0..1] range
function lngX(lng) {
    return lng / 360 + 0.5;
}
function latY(lat) {
    const sin = Math.sin(lat * Math.PI / 180);
    const y = (0.5 - 0.25 * Math.log((1 + sin) / (1 - sin)) / Math.PI);
    return y < 0 ? 0 : y > 1 ? 1 : y;
}

// spherical mercator to longitude/latitude
function xLng(x) {
    return (x - 0.5) * 360;
}
function yLat(y) {
    const y2 = (180 - y * 360) * Math.PI / 180;
    return 360 * Math.atan(Math.exp(y2)) / Math.PI - 90;
}

function extend(dest, src) {
    for (const id in src) dest[id] = src[id];
    return dest;
}

function getX(p) {
    return p.x;
}
function getY(p) {
    return p.y;
}